Ebola virus disease (EVD) is a rare but fatal disease of humans and other primates caused by Ebola viruses. Study shows that the 2014-2015 EVD outbreak causes more than 10,000… Click to show full abstract
Ebola virus disease (EVD) is a rare but fatal disease of humans and other primates caused by Ebola viruses. Study shows that the 2014-2015 EVD outbreak causes more than 10,000 deaths. In this paper, we propose and analyze a deterministic model to study the transmission dynamics of EVD in Sierra Leone, Guinea, and Liberia. Our analyses show that the model has two equilibria: (1) the disease-free equilibrium (DFE) which is locally asymptotically stable when the basic reproduction number ([Formula: see text]) is less than unity and unstable if it is greater than one, and (2) an endemic equilibrium (EE) which is globally asymptotically stable when [Formula: see text] is greater than unity. Furthermore, the backward bifurcation occurs, a coexistence between a stale DFE and a stable EE even if the [Formula: see text] is less than unity, which makes the disease control more strenuous and would depend on the initial size of subpopulation. By fitting to reported Ebola cases from Sierra Leone, Guinea, and Liberia in 2014-2015, our model has captured the epidemic patterns in all three countries and shed light on future Ebola control and prevention strategies.
               
Click one of the above tabs to view related content.