LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fiducial-based fusion of 3D dental models with magnetic resonance imaging

Photo by umanoide from unsplash

PurposeMagnetic resonance imaging (MRI) is widely used in study of maxillofacial structures. While MRI is the modality of choice for soft tissues, it fails to capture hard tissues such as… Click to show full abstract

PurposeMagnetic resonance imaging (MRI) is widely used in study of maxillofacial structures. While MRI is the modality of choice for soft tissues, it fails to capture hard tissues such as bone and teeth. Virtual dental models, acquired by optical 3D scanners, are becoming more accessible for dental practice and are starting to replace the conventional dental impressions. The goal of this research is to fuse the high-resolution 3D dental models with MRI to enhance the value of imaging for applications where detailed analysis of maxillofacial structures are needed such as patient examination, surgical planning, and modeling.MethodsA subject-specific dental attachment was digitally designed and 3D printed based on the subject’s face width and dental anatomy. The attachment contained 19 semi-ellipsoidal concavities in predetermined positions where oil-based ellipsoidal fiducial markers were later placed. The MRI was acquired while the subject bit on the dental attachment. The spatial position of the center of mass of each fiducial in the resultant MR Image was calculated by averaging its voxels’ spatial coordinates. The rigid transformation to fuse dental models to MRI was calculated based on the least squares mapping of corresponding fiducials and solved via singular-value decomposition.ResultsThe target registration error (TRE) of the proposed fusion process, calculated in a leave-one-fiducial-out fashion, was estimated at 0.49 mm. The results suggest that 6–9 fiducials suffice to achieve a TRE of equal to half the MRI voxel size.ConclusionEllipsoidal oil-based fiducials produce distinguishable intensities in MRI and can be used as registration fiducials. The achieved accuracy of the proposed approach is sufficient to leverage the merged 3D dental models with the MRI data for a finer analysis of the maxillofacial structures where complete geometry models are needed.

Keywords: resonance imaging; maxillofacial structures; dental models; fusion; models mri

Journal Title: International Journal of Computer Assisted Radiology and Surgery
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.