LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biodegradable poly (ε-caprolactone)/lithium bis(trifluoromethanesulfonyl) imide as gel polymer electrolyte

Photo from wikipedia

Poor conductivity and toxic technological garbage of polymer electrolyte has delayed energy storage application in electric vehicles. Biodegradable gel polymer electrolytes (GPEs) based on poly (ε-caprolactone) (PCL) are prepared. PCL… Click to show full abstract

Poor conductivity and toxic technological garbage of polymer electrolyte has delayed energy storage application in electric vehicles. Biodegradable gel polymer electrolytes (GPEs) based on poly (ε-caprolactone) (PCL) are prepared. PCL is used to immobilize liquid electrolyte containing lithium bis(trifluoromethanesulfonyl) imide, ethylene carbonate, and propylene carbonate. Impedance spectroscopy, X-ray diffraction, and differential scanning calorimetry are used to characterize the ionic conductivity and structural and thermal properties of GPEs, respectively. For jelly-like GPEs, it exhibits liquid-like ionic conductivity of 1.69 × 10−3 S cm−1 at room temperature with a composition ratio (PCL:LiTFSI:EC:PC) of (22.5:7.5:35:35) (w/w). Results show that the polymer matrix forms cross-linked network within the liquid electrolyte, acting like an adhesive to hold the high fluidity liquid molecules. In temperature dependence studies, the GPEs are observed to obey Arrhenius equation indicating that ion transport occurs via hopping mechanism. The findings in XRD and DSC are in good agreement with conductivity results.

Keywords: lithium bis; gel polymer; polymer; electrolyte; poly caprolactone; polymer electrolyte

Journal Title: Ionics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.