LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical and structural analysis of Mg substitution in lithium-rich layered oxide for lithium-ion battery

Photo from archive.org

Mg-doped lithium-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 with smooth morphology is synthesized by co-precipitation followed by calcination. The morphologies of bare particles and electrodes have been studied through scanning electron microscopy (SEM),… Click to show full abstract

Mg-doped lithium-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 with smooth morphology is synthesized by co-precipitation followed by calcination. The morphologies of bare particles and electrodes have been studied through scanning electron microscopy (SEM), which illustrates that, compared with the Mg-doped particles, the pristine particles are characteristic of angular and corrosion is much more likely to happen. Additionally, the Mg substitution can make the crystal structure stable during the electrode process and then enhance the cycle performance. Electrochemical impedance spectroscopy and transmission electron microscopy have been utilized to gain insight to the properties of pristine and Mg-doped particles before and after the electrode process. Mg-doped particles show lower charge transfer resistance and higher diffusion coefficients (D) of the diffusing lithium ions. After 100 cycles at 250 mA g−1, the morphology and crystal structure of Mg-doped materials show smaller changes than those of pristine particles.

Keywords: lithium rich; microscopy; doped particles; layered oxide; rich layered; lithium

Journal Title: Ionics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.