LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temperature dependency of SnO2/NiO/MWCNT nanocomposite thin film for dye-sensitised solar cells

Photo by fabiooulucas from unsplash

A series of SnO2/NiO-doped MWCNT heterojunctions were prepared in various process temperatures, and dye-sensitised solar cells (DSSCs) were fabricated with dye N719. All samples were characterised by X-ray diffraction (XRD),… Click to show full abstract

A series of SnO2/NiO-doped MWCNT heterojunctions were prepared in various process temperatures, and dye-sensitised solar cells (DSSCs) were fabricated with dye N719. All samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Under the irradiation of 100 mW cm−2, the short-circuit photocurrent density (Jsc) and overall conversion efficiency (ɳ) were improved when the aging temperature increased from 30 to 40 °C. Nevertheless, decreasing Jsc were revealed when the growth temperature was further increased over 40 °C. In contrast, the conversion efficiency was found to increase gradually when the temperature was further increased over 60 °C. The kinetic parameters of electron transport were investigated using the transient photoelectrical and electrical impedance measurements. The effect of process temperature on electron transport performance in DSSCs was discussed elaborately. The results showed that when the process temperature was in the range of 30 to 40 °C, the electron lifetime (τ) in DSSCs was increased. Conversely, these parameters decreased gradually with further increase in process temperature that influenced the electronic transport performance of DSSCs.

Keywords: sno2 nio; temperature; microscopy; dye sensitised; sensitised solar; solar cells

Journal Title: Ionics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.