LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A new approach to providing heterogeneous cation-exchange membrane with enhanced electrochemical and desalination performance by incorporation of Fe3O4/PVP composite nanoparticles

Photo by rgaleriacom from unsplash

This study investigates the efficacy of Fe3O4/PVP composite nanoparticles incorporating into heterogeneous cation exchange membranes on their physicochemical properties and desalination performance via electrodialysis. The blended membranes were fabricated through… Click to show full abstract

This study investigates the efficacy of Fe3O4/PVP composite nanoparticles incorporating into heterogeneous cation exchange membranes on their physicochemical properties and desalination performance via electrodialysis. The blended membranes were fabricated through solution casting technique and characterized by scanning optical microscopy (SOM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDX). The areal electrical resistance declined sharply from 14.7 (Ω cm2) for the pristine membrane to 5.8 (Ω cm2) for the Fe3O4/PVP embedded mixed matrix membranes, whereas the change in membrane water uptake was less that 4%. The blended membranes showed smoother and more hydrophilic surface compared to pristine membrane. The membrane potential, transport number, and permselectivity were also improved obviously by utilizing of Fe3O4/PVP nanoparticles. The nanocomposite membranes demonstrated good potential in separation of bi- to mono-valent ions (Ba2+/Na2+) which was ~ 2.1.

Keywords: membrane; fe3o4 pvp; spectroscopy; microscopy

Journal Title: Ionics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.