Key challenges of Bayesian optimization in high dimensions are both learning the response surface and optimizing an acquisition function. The acquisition function selects a new point to evaluate the black-box… Click to show full abstract
Key challenges of Bayesian optimization in high dimensions are both learning the response surface and optimizing an acquisition function. The acquisition function selects a new point to evaluate the black-box function. Both challenges can be addressed by making simplifying assumptions, such as additivity or intrinsic lower dimensionality of the expensive objective. In this article, we exploit the effective lower dimensionality with axis-aligned projections and optimize on a partitioning of the input space. Axis-aligned projections introduce a multiplicity of outputs for a single input that we refer to as inconsistency. We model inconsistencies with a Gaussian process (GP) derived from quantile regression. We show that the quantile GP and the partitioning of the input space increases data-efficiency. In particular, by modeling only a quantile function, we overcome issues of GP hyper-parameter learning in the presence of inconsistencies.
               
Click one of the above tabs to view related content.