LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On refinement strategies for solving $${\textsc {MINLP}\mathrm{s}}$$  by piecewise linear relaxations: a generalized red refinement

Photo by mymind from unsplash

We investigate the generalized red refinement for n-dimensional simplices that dates back to Freudenthal (Ann Math 43(3):580–582, 1942) in a mixed-integer nonlinear program ($${\textsc {MINLP}}$$ MINLP ) context. We show… Click to show full abstract

We investigate the generalized red refinement for n-dimensional simplices that dates back to Freudenthal (Ann Math 43(3):580–582, 1942) in a mixed-integer nonlinear program ($${\textsc {MINLP}}$$ MINLP ) context. We show that the red refinement meets sufficient convergence conditions for a known $${\textsc {MINLP}}$$ MINLP  solution framework that is essentially based on solving piecewise linear relaxations. In addition, we prove that applying this refinement procedure results in piecewise linear relaxations that can be modeled by the well-known incremental method established by Markowitz and Manne (Econometrica 25(1):84–110, 1957). Finally, numerical results from the field of alternating current optimal power flow demonstrate the applicability of the red refinement in such $${\textsc {MIP}}$$ MIP -based $${\textsc {MINLP}}$$ MINLP  solution frameworks.

Keywords: linear relaxations; generalized red; minlp; textsc minlp; piecewise linear; red refinement

Journal Title: Optimization Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.