Convolutional neural networks (CNNs) show potential for delineating cancers on contrast-enhanced MRI (ce-MRI) but there are clinical scenarios in which administration of contrast is not desirable. We investigated performance of… Click to show full abstract
Convolutional neural networks (CNNs) show potential for delineating cancers on contrast-enhanced MRI (ce-MRI) but there are clinical scenarios in which administration of contrast is not desirable. We investigated performance of the CNN for delineating primary nasopharyngeal carcinoma (NPC) on non-contrast-enhanced images and compared the performance to that on ce-MRI. We retrospectively analyzed primary NPC in 195 patients using a well-established CNN, U-Net, for tumor delineation on the non-contrast-enhanced fat-suppressed (fs)-T2W, ce-T1W and ce-fs-T1W images. The CNN-derived delineations were compared to manual delineations to obtain Dice similarity coefficient (DSC) and average surface distance (ASD). The DSC and ASD on fs-T2W were compared to those on ce-MRI. Primary tumor volumes (PTVs) of CNN-derived delineations were compared to that of manual delineations. The CNN for NPC delineation on fs-T2W images showed similar DSC (0.71 ± 0.09) and ASD (0.21 ± 0.48 cm) to those on ce-T1W images (0.71 ± 0.09 and 0.17 ± 0.19 cm, respectively) (p > 0.05), and lower DSC but similar ASD to ce-fs-T1W images (0.73 ± 0.09, p < 0.001; and 0.17 ± 0.20 cm, p > 0.05). The CNN overestimated PTVs on all sequences (p < 0.001). The CNN showed promise for NPC delineation on fs-T2W images in cases where it is desirable to avoid contrast agent injection. The CNN overestimated PTVs on all sequences.
               
Click one of the above tabs to view related content.