LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Experimental Study on the Effects of a Film Cooling Configuration and Mainstream Temperature on Depositing

Photo from wikipedia

The effects of a film cooling configuration and mainstream temperature on the depositing of particles are experimentally studied by using plate models. The particles are generated by melting wax and… Click to show full abstract

The effects of a film cooling configuration and mainstream temperature on the depositing of particles are experimentally studied by using plate models. The particles are generated by melting wax and atomizing it. One model has a film cooling configuration and the other does not. The experimental results show that the film cooling configuration does not influence the depositing on the leading edge of the model very significantly. However, the film cooling configuration could increase the depositing on the upper surface of the model dramatically since the flow structure on the upper surface is changed due to the film cooling configuration. The effect of the mainstream temperature on the depositing is studied by using the model with film cooling configuration. The lower and higher mainstream temperature both could reduce the depositing. However, the mechanisms are different. The lower mainstream temperature could make more molten particles become solid particles, which could rebound from the surface of the model, reducing the depositing. The higher mainstream temperature could make all particles remain molten with higher temperature. In this case, more particles could splash from the surface of the model. Therefore, there may be a mainstream temperature at which the depositing mass is maximum.

Keywords: temperature; cooling configuration; film cooling; mainstream temperature

Journal Title: Journal of Thermal Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.