This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed (SP) system using approximate feedback linearization (AFL) method. The essence of AFL method lies… Click to show full abstract
This article is devoted to the problem of composite control design for continuous nonlinear singularly perturbed (SP) system using approximate feedback linearization (AFL) method. The essence of AFL method lies in the feedback linearization only of a certain part of the original nonlinear system. According to AFL approach, we suggest to solve feedback linearization problems for continuous nonlinear SP system by reducing it to two feedback linearization problems for slow and fast subsystems separately. The resulting AFL control is constructed in the form of asymptotic composition (composite control). Standard procedure for the composite control design consists of the following steps: 1) system decomposition, 2) solution of control problem for fast subsystem, 3) solution of control problem for slow subsystem, 4) construction of the resulting control in the form of the composition of slow and fast controls. The main difficulty during system decomposition is associated with dynamics separation condition for nonlinear SP system. To overcome this, we propose to change the sequence of the design procedure: 1) solving the control problem for fast state variables part, 2) system decomposition, 3) solving the control problem for slow state variables part, 4) construction of the resulting composite control. By this way, fast feedback linearizing control is chosen so that the dynamics separation condition would be met and the fast subsystem would be stabilizable. The application of the proposed approach is illustrated through several examples.
               
Click one of the above tabs to view related content.