A heterogeneous wireless sensor network comprises a number of inexpensive energy constrained wireless sensor nodes which collect data from the sensing environment and transmit them toward the improved cluster head… Click to show full abstract
A heterogeneous wireless sensor network comprises a number of inexpensive energy constrained wireless sensor nodes which collect data from the sensing environment and transmit them toward the improved cluster head in a coordinated way. Employing clustering techniques in such networks can achieve balanced energy consumption of member nodes and prolong the network lifetimes. In classical clustering techniques, clustering and in-cluster data routes are usually separated into independent operations. Although separate considerations of these two issues simplify the system design, it is often the non-optimal lifetime expectancy for wireless sensor networks. This paper proposes an integral framework that integrates these two correlated items in an interactive entirety. For that, we develop the clustering problems using nonlinear programming. Evolution process of clustering is provided in simulations. Results show that our joint-design proposal reaches the near optimal match between member nodes and cluster heads.
               
Click one of the above tabs to view related content.