LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Solidification and Structure Formation during Casting of Large Inserts in Ferritic Nodular Cast Iron

Photo from wikipedia

The graphite nodule count and size distributions for boiling water reactor (BWR) and pressurized water reactor (PWR) inserts were investigated by taking samples at heights of 2160 and 1150 mm, respectively.… Click to show full abstract

The graphite nodule count and size distributions for boiling water reactor (BWR) and pressurized water reactor (PWR) inserts were investigated by taking samples at heights of 2160 and 1150 mm, respectively. In each cross section, two locations were taken into consideration for both the microstructural and solidification modeling. The numerical solidification modeling was performed in a two-dimensional model by considering the nucleation and growth in eutectic ductile cast iron. The microstructural results reveal that the nodule size and count distribution along the cross sections are different in each location for both inserts. Finer graphite nodules appear in the thinner sections and close to the mold walls. The coarser nodules are distributed mostly in the last solidified location. The simulation result indicates that the finer nodules are related to a higher cooling rate and a lower degree of microsegregation, whereas the coarser nodules are related to a lower cooling rate and a higher degree of microsegregation. The solidification time interval and the last solidifying locations in the BWR and PWR are also different.

Keywords: structure formation; cast iron; solidification structure; solidification

Journal Title: Metallurgical and Materials Transactions B
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.