LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Data-Driven Mathematical Modeling of the Effect of Particle Size Distribution on the Transitory Reaction Kinetics of Hot Metal Desulfurization

Photo from wikipedia

The aim of this work was to develop a prediction model for hot metal desulfurization. More specifically, the study aimed at finding a set of explanatory variables that are mandatory… Click to show full abstract

The aim of this work was to develop a prediction model for hot metal desulfurization. More specifically, the study aimed at finding a set of explanatory variables that are mandatory in prediction of the kinetics of the lime-based transitory desulfurization reaction and evolution of the sulfur content in the hot metal. The prediction models were built through multivariable analysis of process data and phenomena-based simulations. The model parameters for the suggested model types are identified by solving multivariable least-squares cost functions with suitable solution strategies. One conclusion we arrived at was that in order to accurately predict the rate of desulfurization, it is necessary to know the particle size distribution of the desulfurization reagent. It was also observed that a genetic algorithm can be successfully applied in numerical parameter identification of the proposed model type. It was found that even a very simplistic parameterized expression for the first-order rate constant provides more accurate prediction for the end content of sulfur compared to more complex models, if the data set applied for the modeling contains the adequate information.

Keywords: particle size; desulfurization; size distribution; metal desulfurization; reaction; hot metal

Journal Title: Metallurgical and Materials Transactions B
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.