LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolutions of the Micro- and Macrostructure and Tensile Property of Cu-15Ni-8Sn Alloy During Electromagnetic Stirring-Assisted Horizontal Continuous Casting

Photo by etienne_beauregard from unsplash

The present study investigates the evolution of the micro- and macrostructure and tensile property of the Cu-15Ni-8Sn (weight percent) alloy prepared by horizontal continuous casting and electromagnetic stirring (EMS). The… Click to show full abstract

The present study investigates the evolution of the micro- and macrostructure and tensile property of the Cu-15Ni-8Sn (weight percent) alloy prepared by horizontal continuous casting and electromagnetic stirring (EMS). The results show that the application of EMS is beneficial for grain refinement and for microstructure transformation from the dendrite to the rosette structure and that it leads to a significant improvement in the tensile property. The forced flow induced by EMS homogenizes the temperature field ahead of the solid-liquid interface, disturbing the heat flow direction and resulting in the columnar to equiaxed transition. The grain refinement under different electromagnetic stirring frequencies is mainly derived from the homogenization of the temperature and the remelting of dendritic arms. In addition, the evolution of the tensile property with and without EMS is discussed from the perspective of fracture mode and fine-grain strengthening.

Keywords: electromagnetic stirring; micro macrostructure; tensile property; property 15ni; property; macrostructure tensile

Journal Title: Metallurgical and Materials Transactions B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.