Pulse responses were studied for the heterojunctions within the structure of Ti/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/Ti. The pulse response was found to resemble that of the action potential after the pulse width… Click to show full abstract
Pulse responses were studied for the heterojunctions within the structure of Ti/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/Ti. The pulse response was found to resemble that of the action potential after the pulse width was modulated to a time scale of nanoseconds. Using the pulse as a stimulation protocol to simulate synaptic plasticity produced spike rate-dependent plasticity-like phenomena. Thus, the application scope of this conducting polymer-based memristor can be extended from a time scale of milliseconds to one of nanoseconds, depending on the requirement of neuromorphic circuits. Current oscillations were observed with a period within 100 ns. The mechanisms of the behavior response were analyzed according to memristor protocol. An interface barrier is thought to primarily account for the origin of the capacitive feature and the charge q, i.e., one of the basic characteristic of the memristor. The chain structure of this conducting polymer should primarily account for the origin of its inductive feature and the flux φ, i.e., another basic characteristic of the memristor.
               
Click one of the above tabs to view related content.