In this study, multifunctional nanocomposites consisting of silver nanoparticles and manganese ferrite nanoparticles (Ag–MnFe2O4) were successfully synthesized using a two-step chemical process. The formation of Ag–MnFe2O4 nanocomposites were analyzed by… Click to show full abstract
In this study, multifunctional nanocomposites consisting of silver nanoparticles and manganese ferrite nanoparticles (Ag–MnFe2O4) were successfully synthesized using a two-step chemical process. The formation of Ag–MnFe2O4 nanocomposites were analyzed by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy measurements. Noticeable antibacterial activity of the Ag–MnFe2O4 nanocomposites was demonstrated against two Gram-negative bacteria, Salmonella enteritidis and Klebsiella pneumoniae. A direct-drop diffusion method can be an effective way to investigate the antibacterial effects of nanocomposite samples. Interestingly, we also demonstrated the use of Ag–MnFe2O4 nanocomposites as a surface-enhanced Raman scattering (SERS) platform to detect and quantify trace amounts of organic dye in water solutions. The combination of Ag and MnFe2O4 nanoparticles opens opportunities for creating advantages such as targeted bactericidal delivery, recyclable capability, and sensitive SERS-based detection for advanced biomedicine and environmental monitoring applications.
               
Click one of the above tabs to view related content.