LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanostructure and Volatile Organic Compounds Sensing Properties of α-Fe2O3/Reduced Graphene Oxide Nanocomposite Derived by Spray Method

Photo from wikipedia

This paper investigates the α-Fe2O3/reduced graphene oxide (rGO) nanocomposite as a volatile organic compounds (VOCs) sensor. The α-Fe2O3/reduced graphene oxide nanocomposites of about 370 nm thickness were synthesized by a spray… Click to show full abstract

This paper investigates the α-Fe2O3/reduced graphene oxide (rGO) nanocomposite as a volatile organic compounds (VOCs) sensor. The α-Fe2O3/reduced graphene oxide nanocomposites of about 370 nm thickness were synthesized by a spray method with different rGO contents (3%, 4%, and 5%) on SiO2/Si substrates. The samples were structurally and morphologically characterized by x-ray diffraction, and field emission scanning electron microscopy. These analyses showed that an increase in rGO content decreases the crystallinity of the samples. In order to study the VOCs sensing properties, the sensitivity and selectivity of the samples were tested with different VOCs vapors including ethanol, methanol, toluene, benzene, and formic acid in the temperature range of 200–400°C. The results show that the α-Fe2O3/rGO nanocomposites are more selective to ethanol than the other vapors, while an increase in rGO content decreases the sensitivity of the samples. The α-Fe2O3/rGO (3%)-based ethanol sensor also shows a good stability with respect to relative humidity in the range of 20–50% with a 1-ppm detection limit at the operating temperature of 280°C.

Keywords: graphene oxide; organic compounds; rgo; volatile organic; fe2o3 reduced; reduced graphene

Journal Title: Journal of Electronic Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.