LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Supported Ni0.85Se Nanosheets Array on Carbon Fiber Cloth for a High-Performance Asymmetric Supercapacitor

Photo by terri_bleeker from unsplash

In this work, Ni0.85Se nanosheets array electrode material was prepared with carbon fiber cloth (CFC) as a substrate. Owing to their special structure, the Ni0.85Se nanosheets array exhibits an outstanding… Click to show full abstract

In this work, Ni0.85Se nanosheets array electrode material was prepared with carbon fiber cloth (CFC) as a substrate. Owing to their special structure, the Ni0.85Se nanosheets array exhibits an outstanding energy storage property with a superior specific capacitance (820 F/g) and great rate capability (83.17%). Moreover, the Ni0.85Se electrode presents an great cycling performance with 82.63% retention after 10,000 cycles. The asymmetric supercapacitor (ASC) was fabricated based on Ni0.85Se positive and activated carbon (AC) negative electrode materials, with KOH/PVA gel as the electrolyte, respectively. A highest energy density of 29 W h kg−1 was achieved at a power density of 779 W kg−1 under the optimal potential range of 1.6 V. Furthermore, the Ni0.85Se//AC ASC devices demonstrate a great cycling performance of 81.25% capacitance retention after 5000 charge–discharge cycles. These excellent performance provide strong evidence to confirm the conclusion that Ni0.85Se nanosheets array used as electrode materials in supercapacitors and Ni0.85Se//AC asymmetric supercapacitors hold significant potential in the field of energy storage.

Keywords: 85se nanosheets; carbon fiber; ni0 85se; performance; nanosheets array

Journal Title: Journal of Electronic Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.