LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling and Experimental Verification of Intermetallic Compounds Grown by Electromigration and Thermomigration for Sn-0.7Cu Solders

Photo by jeremybishop from unsplash

Printed circuit boards that use fine pitch technology have a greater risk of open-circuit failure, due to void formations caused by the growth of intermetallic compounds. This failure mode is… Click to show full abstract

Printed circuit boards that use fine pitch technology have a greater risk of open-circuit failure, due to void formations caused by the growth of intermetallic compounds. This failure mode is reported to be a result of electromigration (EM) damage. Current stressing occurs when current flows in a solder bump, thereby producing EM. Joule heating is also a significant occurrence under current stressing conditions, and induces thermomigration (TM) in solder bumps during EM. This study investigated the intermetallic compound (IMC) growth kinetics for Sn-0.7Cu solders, modeled by EM, TM, and chemical diffusion. The modeling results concurred with the observed kinetics of IMC growth. Electromigration influenced the growth of IMCs most significantly for a current density of 10 kA/cm2. The effect of TM on the IMC growth had to be considered for a thermogradient of 870°C/cm. However, the effect of chemical diffusion was insignificant on IMC growth, specifically for a current density of 10 kA/cm2.

Keywords: imc growth; electromigration; intermetallic compounds; thermomigration; 7cu solders; growth

Journal Title: Journal of Electronic Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.