LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation and Characterization of Ni/Bi0.5Sb1.5Te3 Heterogeneous Multilayered Thermoelectric Materials

Photo from archive.org

It is difficult to achieve coordinated optimization in thermoelectric materials due to the strong coupling between the electrical and thermal transport properties. However, interface effects, especially those caused by heterogeneous… Click to show full abstract

It is difficult to achieve coordinated optimization in thermoelectric materials due to the strong coupling between the electrical and thermal transport properties. However, interface effects, especially those caused by heterogeneous interfaces, are promising to overcome this challenge. In this work, the Ni/Bi0.5Sb1.5Te3 (BST) heterogeneous multilayer structure thermoelectric materials were fabricated by the combination of vacuum evaporation deposition and spark plasma sintering. The influence of Ni layer on the phase composition, microstructure and thermoelectric performance along the different directions (0°, 30°, 60° and 90°, the angles between the performance measurement direction and the Ni layer) of Ni/BST materials were systematically investigated. The microstructural analysis indicates that the distinct heterogeneous interfaces were firmly bonded, and the interface reaction layer was composed of Ni and Te. As compared with the matrix, the electrical conductivity and Seebeck coefficient of the Ni/BST heterogeneous multilayer thermoelectric materials increased, and the thermal conductivity slightly reduced. For Ni/BST90° sample, the maximum ZT value of 1.05 was achieved at 370 K, increased by 19.1% compared with the BST90°. Our work demonstrates that the electron and phonon transport properties can be simultaneously optimized by introducing the ordered heterogeneous interfaces.

Keywords: bi0 5sb1; heterogeneous interfaces; 5sb1 5te3; thermoelectric materials; materials preparation; preparation characterization

Journal Title: Journal of Electronic Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.