High electron mobility transistors built using In0.52Al0.48As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{0.52}\hbox {Al}_{0.48}\hbox {As}$$\end{document}/In0.53Ga0.47As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{0.53}\hbox {Ga}_{0.47}\hbox… Click to show full abstract
High electron mobility transistors built using In0.52Al0.48As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{0.52}\hbox {Al}_{0.48}\hbox {As}$$\end{document}/In0.53Ga0.47As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{0.53}\hbox {Ga}_{0.47}\hbox {As}$$\end{document} on InP substrates are currently being investigated for numerous applications due to their favorable performance for microwave, optical and digital applications. We present a detailed and comprehensive study of steady-state and transient electronic transport in In0.52Al0.48As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {In}_{0.52}\hbox {Al}_{0.48}\hbox {As}$$\end{document} with a three-valley model using the semi-classical ensemble Monte Carlo method including all important scattering mechanisms. Electronic transport parameters such as drift velocity, valley occupation, average electron energy, ionization coefficient and generation rate, electron effective mass, diffusion coefficient, energy and momentum relaxation time are extracted rigorously from the simulations. Using these, we present a detailed characterization of the transient electronic transport showing the variation of drift velocity with distance and time. We further estimate the optimal cut-off frequencies for various device lengths via the velocity overshoot effect. Our analysis shows that transient effects are significant for device lengths shorter than 700 nm and should be taken into account for optimal device designs. As a critical example at length scales of around 100 nm, we obtain a significant improvement in the cut-off frequency from 261 GHz to 663 GHz with the inclusion of transient effects. The field dependence of all extracted parameters done here can prove to be highly useful for further device analysis and design.
               
Click one of the above tabs to view related content.