The study deals with the influence of thermal boundary effects on the process of creating recovery stresses in a SMA wire activated by Joule heating, during a thermal cycle (up… Click to show full abstract
The study deals with the influence of thermal boundary effects on the process of creating recovery stresses in a SMA wire activated by Joule heating, during a thermal cycle (up to the return to ambient temperature). First, a thermal characterization is performed using infrared thermography for temperature profile measurements along the wire in a steady-state regime. Second, recovery stress tests are performed using a uniaxial testing machine. Finally, tests are analyzed using a thermomechanical model, taking the inhomogeneous temperature distribution along the wire into account. The influence of the initial distribution of martensite (before thermal activation of the memory effect) is discussed, as well as the influence of the wire length. It is shown that the thermal boundary effects at the contact with the grips of the testing machine significantly influence the response of the wire. For instance, during the heating of the wire, an austenite-to-martensite transformation may occur in the zones near the wire ends (where the temperature remains close to ambient) due to the increased stress. A length of influence of the thermal boundary effects on the overall wire response is defined, and a condition to neglect this influence is proposed. The study highlights the importance of taking thermal boundary effects into account for practical applications of SMAs based on Joule heating.
               
Click one of the above tabs to view related content.