The corrosion behaviors of Super304H and HR3C used for USC boiler applications were investigated in simulated coal ash/gas environments with 0.1 and 1.5% of SO2 at 650 °C for 500 h. The… Click to show full abstract
The corrosion behaviors of Super304H and HR3C used for USC boiler applications were investigated in simulated coal ash/gas environments with 0.1 and 1.5% of SO2 at 650 °C for 500 h. The results indicated that the increase in SO2 accelerated the corrosion rate and the spalling tendency of the corrosion layer in both tested alloys. Fe2O3, Cr2O3 and FeCr2O4 main peaks were revealed by XRD on Super304H, but on HR3C only the Cr2O3 peak showed a high intensity. The SO2 content did not affect the corrosion product composition of any of the alloys, but accelerated the inner sulfidation and the spallation on Super304H. No obvious internal sulfidation was observed on HR3C in either SO2 content. Based on the experimental results, the alloy corrosion mechanism and the influence of sulfur content on the corrosion process were discussed.
               
Click one of the above tabs to view related content.