The process of cyclic bending was investigated using thin sheets of the magnesium alloy AZ31 and α-titanium. These materials possess an hcp crystal lattice with different c/a ratios. It turned… Click to show full abstract
The process of cyclic bending was investigated using thin sheets of the magnesium alloy AZ31 and α-titanium. These materials possess an hcp crystal lattice with different c/a ratios. It turned out that the latter have a substantial influence on the sheet deformation behavior. Even for small deformations (up to 2% strain), a large influence on the yield stress was present for both materials. In addition, cyclic bending contributes to the activation of prismatic slip, which is accompanied by twinning and detwinning. The changes in sheet anisotropy following cyclic bending were determined using texture measurements. Specifically, the AZ31 alloy sheets exhibited a considerable change in anisotropy of the mechanical properties with an increasing number of bending cycles. The anisotropy in the yield stress increases from 15% in the initial condition to 40% after three cycles. For the α-titanium sheet, the change in anisotropy was approx. 26% less. In general, the largest changes in properties occurred already in the first bending cycle and a stabilization took place upon further cycling.
               
Click one of the above tabs to view related content.