LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and Mechanical Properties of Dissimilar Joints of Al-Mg2Si and 5052 Aluminum Alloy by Friction Stir Welding

Photo from wikipedia

Al-Mg2Si alloy and 5052 Al alloy were welded successfully by friction stir welding (FSW) in this study. The results show that the alloy consists of three distinct zones after FSW:… Click to show full abstract

Al-Mg2Si alloy and 5052 Al alloy were welded successfully by friction stir welding (FSW) in this study. The results show that the alloy consists of three distinct zones after FSW: the base material zone (BMZ), the transitional zone, and the weld nugget (WN). The morphologies of the primary Mg2Si phases are identified as coarse equiaxed crystals for Al-Mg2Si alloys in the BMZ. The WN is a mixture of rich Al-Mg2Si and rich 5052 alloy, and a banded structure is formed in the zone. Interestingly, in the WN, the equiaxed crystals changed to polygonal particles with substantially reduced sizes in the rich Al-Mg2Si zone. However, in addition to the white rich Mg phase appearing in the rich 5052 zone near the interface, the 5052 alloy does not show obvious changes. The hardness gradually increases from the BMZ of the 5052 to the welded joint to the Al-Mg2Si BMZ. In addition, the ultimate tensile strength (UTS) of the welded joint is higher than that of the base material of the Al-Mg2Si, whereas it is lower than that of the 5052 base alloy. The results of the elongation are similar to the UTS results. The fracture mechanism is also investigated.

Keywords: alloy; 5052 alloy; friction stir; mg2si; stir welding

Journal Title: Journal of Materials Engineering and Performance
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.