LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructural Characterization and High Strain Rate Plastic Flow Behavior of SMAW Armox500T Steel Joints from Spherical Indentation Experiments

Photo from wikipedia

Static indentation and uniaxial compression tests have been conducted on Armox500T steel and its weldments to predict the constraint factor (CF), i.e., ratio of Meyer’s hardness to uniaxial flow stress.… Click to show full abstract

Static indentation and uniaxial compression tests have been conducted on Armox500T steel and its weldments to predict the constraint factor (CF), i.e., ratio of Meyer’s hardness to uniaxial flow stress. Series of dynamic indentation experiments were carried out at impact velocities ranging from 5 to 300 m/s to estimate dynamic hardness as a function of average strain. Subsequently, dynamic indentation (DI) test data and CF determined under static indentation conditions have been used to study the high strain rate plastic flow behavior of Armox500T weldments in comparison with the base metal. It was observed that flow stress for Armox500T and its weldments under dynamic loading conditions (104 s−1) are significantly higher than flow stress measured under static loading conditions (10−3 s−1). The plastic flow behavior computed from DI is in good agreement with the data evaluated through conventional split Hopkinson pressure bar technique. Further, the study of the microstructure of base metal and weldments by optical microscopy and SEM revealed a considerable variation in the microstructure.

Keywords: strain; plastic flow; flow behavior; indentation

Journal Title: Journal of Materials Engineering and Performance
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.