LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanism of Decrease in Impact Toughness in a Low-Carbon MnCrMoNiCu Plate Steel with Increasing Austenitizing Temperature

Photo by jernejgraj from unsplash

In order to reveal how microscopic factors affect the toughness and the occurrence of cleavage fracture of a low-carbon MnCrMoNiCu alloyed steel, a series of thermal treatments was performed on… Click to show full abstract

In order to reveal how microscopic factors affect the toughness and the occurrence of cleavage fracture of a low-carbon MnCrMoNiCu alloyed steel, a series of thermal treatments was performed on the steel employing a thermomechanical simulator. These involved reheating samples at different temperatures (950-1250 °C), producing different prior austenite sizes, followed by a continuous cooling transformation process. The Charpy V-notch toughness was determined, and the effect of austenite grain size on the ductile-to-brittle transition temperatures of the steel was investigated. The microstructural evolution on the austenite sizes was studied, fracture features were characterized, the critical event for cleavage fracture was identified, and the local cleavage fracture stress σf was calculated. The impact toughness decreased as the austenitizing temperature increased. A quantitative relationship between σf and the size of the initial cleavage fracture facet (microcrack nucleus) af in the lathy martensite + bainite microstructure has been developed.

Keywords: carbon mncrmonicu; fracture; cleavage fracture; low carbon; impact toughness; steel

Journal Title: Journal of Materials Engineering and Performance
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.