Additive manufacturing (AM) has attracted considerable attention in recent years. This technology overcomes the geometrical limits of workpieces produced with the traditional subtractive methods and so gives the opportunity to… Click to show full abstract
Additive manufacturing (AM) has attracted considerable attention in recent years. This technology overcomes the geometrical limits of workpieces produced with the traditional subtractive methods and so gives the opportunity to manufacture highly complex shapes. Unfortunately, the repeatability of the manufacturing process and the monitoring of quality are not reliable enough to be utilized in mass production. The quality monitoring of AM processes in commercial equipment has been largely based on temperature measurements of the process zone or high-resolution imaging of the layers. However, both techniques lack information about the physical phenomena taking place in the depth of the materials medium and this limits their reliability in real-life applications. To overcome those restrictions, we propose to combine acoustic emission and reinforcement learning. The former captures the information about the subsurface dynamics of the process. The latter is a branch of machine learning that allows interpreting the received data in terms of quality. The combination of both is an original method for in situ and real-time quality monitoring. Acoustic data were collected during a real process using a commercial AM machine. The process parameters were selected to achieve three levels of quality in terms of porosity concentration while manufacturing a stainless steel 316L cuboid shape. Using our method, we demonstrated that each level of quality produced unique acoustic signatures during the build that were recognized by the classifier. The classification accuracy reached in this work proves that the proposed method has high potential to be used as in situ and real-time monitoring of AM quality.
               
Click one of the above tabs to view related content.