LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Analysis of the Crushing of Honeycomb Cores Under Compression

Photo from wikipedia

This paper presents an experimental study of the compressive response of hexagonal honeycomb core from the initial elastic regime to a fully crushed state. To understand the crushing mechanism, aluminum… Click to show full abstract

This paper presents an experimental study of the compressive response of hexagonal honeycomb core from the initial elastic regime to a fully crushed state. To understand the crushing mechanism, aluminum honeycomb core was compressed quasi-statically between rigid platens under displacement control. Honeycomb test specimens made of aluminum alloy with different configurations such as cell size, cell number, core density, and specimen size have been tested. During the crushing, the cells buckle elastically and collapse at a higher stress due to inelastic action, after the cells crush by progressive formation of folds on cell walls. The response densifies when folds consume the whole panel height. The peak load recorded during tests corresponded to the buckling of honeycomb cells. The different specimens showed similar load/displacement curves, and the differences observed were only due to the influence of the core density, number of cells, and specimens size on mechanical behavior of hexagonal honeycomb core which has a very important role in the energy absorption capacity. In addition, this study allowed us to build a database of experimental tests for various configurations and allowed us to know the precise energy absorption capacity.

Keywords: analysis crushing; experimental analysis; honeycomb; crushing honeycomb; honeycomb core; core

Journal Title: Journal of Materials Engineering and Performance
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.