LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructural Stability During Creep Exposure of 9Cr-1Mo Steel Treated at Different Normalization Temperatures

Photo by jentheodore from unsplash

A modified 9Cr-1Mo steel has been exposed to three separate austenitization temperatures, i.e., at 950, 1025, and 1100 °C for normalization. After subsequent tempering at 750 °C, the normalized and tempered samples… Click to show full abstract

A modified 9Cr-1Mo steel has been exposed to three separate austenitization temperatures, i.e., at 950, 1025, and 1100 °C for normalization. After subsequent tempering at 750 °C, the normalized and tempered samples were creep-tested at temperatures of 550, 600, and 650 °C. The creep strength of the investigated samples was evaluated in terms of minimum creep strain rate and time to rupture. The effects of microstructure, precipitate and boundary misorientation on the creep behavior of the samples have been studied with TEM and EBSD analyses. Further, the evolution of crystallographic texture after creep tests has also been studied. The presence of an intermediate size of martensitic microstructural units (i.e., prior-austenite grain, martensitic packets, etc.) and combination of fine coherent and incoherent Nb(C,N) precipitates has provided superior creep strength for the samples normalized at 1025 °C, when these are subsequently subjected to low-temperature (i.e., 550 °C) and high-temperature (i.e., 650 °C) creep tests, as compared to other conditions of normalizing heat treatment.

Keywords: creep; normalization; 9cr 1mo; 1mo steel; microstructural stability

Journal Title: Journal of Materials Engineering and Performance
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.