LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Laser Shock Peening on the Microstructure and Properties of the Inconel 625 Surface Layer

Photo from wikipedia

The aim of this work was to investigate the influence of laser shock peening on the topography, microstructure, surface roughness and the mechanical properties of the Inconel 625 nickel alloy.… Click to show full abstract

The aim of this work was to investigate the influence of laser shock peening on the topography, microstructure, surface roughness and the mechanical properties of the Inconel 625 nickel alloy. Examination of the topography and microstructure of the nickel alloy after laser treatment was carried out by means of scanning electron microscopy as well as atomic force microscopy. The roughness of the surface was measured by WYKO NT9300 equipment. Nanohardness test was carried out using a nanoindenter NHT 50-183 of CSM Instruments equipped with a Berkovich diamond indenter. Additionally, transmission electron microscopy was used to examine the microstructural changes on the surface layer after laser treatment. The investigations showed that the laser process produced an ablation and melting of the surface layer and, hence, increased the surface roughness of the Inconel 625. On the other hand, the presence of the slip bands on the surface and on the cross section of the treated material, a high density of dislocations and a higher hardness of the treated region indicated that the laser shock processing caused severe plastic deformation of the surface layer. Additionally, due to the high plastic deformation, cracking of the carbide precipitates was observed.

Keywords: topography; laser; microscopy; surface; surface layer

Journal Title: Journal of Materials Engineering and Performance
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.