LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of TiC Content on Tensile Properties, Bend Strength, and Thermal Conductivity of Al-Li-Cu-Mg-Zr Alloy/TiC Composites Produced by Accumulative Roll Bonding

Photo from wikipedia

Composite strips based on an Al-Li-Cu-Mg-Zr alloy reinforced with titanium–carbide (TiC) microparticles were manufactured through the accumulative roll bonding (ARB) process. The microstructure, mechanical and thermal conductivity properties of the… Click to show full abstract

Composite strips based on an Al-Li-Cu-Mg-Zr alloy reinforced with titanium–carbide (TiC) microparticles were manufactured through the accumulative roll bonding (ARB) process. The microstructure, mechanical and thermal conductivity properties of the processed composites have been experimentally investigated and compared with the as-hot-rolled and un-reinforced states. The microstructure of the reinforced sheets shows the excellent reinforcement’s dispersion after the second ARB cycle. In addition, the obtained results indicate that the overall properties of the ARBed strips are enhanced by increasing the TiC content up to 2 wt.%. The processed sheets reinforced with 2 wt.% TiC after two ARB cycles present the superior comprehensive combination of the grain refining, good bonding and proper particle dispersions to reach the outstanding tensile, bending and specific strengths, appropriate tensile elongation and thermal conductivity. Herein, the tensile and bending strengths reach 380.79 and 623.69 MPa, respectively, which are considerably higher than 260.14 and 438.35 MPa, 322.34 and 528.67 MPa of the as-hot-rolled and the un-reinforced sheets after the same cycle, respectively. Moreover, the fracture morphologies of the processed strips exhibit a ductile-shear mixed fracture responding to good elongations of the specimens.

Keywords: tic content; roll bonding; thermal conductivity; conductivity; accumulative roll

Journal Title: Journal of Materials Engineering and Performance
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.