LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-Objective Optimization for Energy Absorption of Carbon Fiber-Reinforced Plastic/Aluminum Hybrid Circular Tube under Both Transverse and Axial Loading

Photo from wikipedia

In order to obtain a hybrid tube with better energy absorption performance under both three-point bending and axial compression, multi-objective optimization for energy absorption of carbon fiber-reinforced plastics (CFRP)/aluminum (CFRP/AL)… Click to show full abstract

In order to obtain a hybrid tube with better energy absorption performance under both three-point bending and axial compression, multi-objective optimization for energy absorption of carbon fiber-reinforced plastics (CFRP)/aluminum (CFRP/AL) hybrid circular tubes was presented in this paper. Experiments and finite element model (FEM) of the hybrid circular tubes subjected to three-point bending and axial compression were performed, and the finite element models were validated. The effects of fiber filament winding angle (θ) and aluminum wall thickness (t) on energy absorption characteristic of the hybrid tube under three-point bending and axial compressive were discussed by FEM. The results show that θ and t have different effects on the specific energy absorption (SEA) of the hybrid tube under three-point bending and axial compression, respectively. A five-order polynomial response surface (PRS) and artificial neural network (ANN) were used to connect variables (θ and t) and the objective (SEA), respectively. It was found that the fitting accuracy of ANN was better. The non-dominated sorting genetic algorithm-II (NSGAII) was applied to obtain optimal results in the form of Pareto frontier solutions. The specific energy absorption of the optimized hybrid tube (θ = 24°, t = 1.45 mm) verified by simulation under three-point bending and axial compression is 1.11 kN/kg and 45.59 kN/kg, respectively. The hybrid tube exhibits better specific energy absorption under both loads.

Keywords: energy; three point; hybrid tube; energy absorption

Journal Title: Journal of Materials Engineering and Performance
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.