One of the most exciting possibilities brought forward by some additive manufacturing (AM) processes is their ability to deposit materials on existing parts. Mainly achievable with directed energy deposition systems,… Click to show full abstract
One of the most exciting possibilities brought forward by some additive manufacturing (AM) processes is their ability to deposit materials on existing parts. Mainly achievable with directed energy deposition systems, it is thus possible to repair worn or broken components. Two applications were studied in this research: (1) complete construction and (2) repair of tensile specimens made of 316L-Si stainless steel. The latter series was produced by adding material on existing half specimens made of wrought 316L stainless steel. All specimens were built along the Z-axis. Tensile specimens machined from wrought were also tested for comparison purposes. Three conditions were tested for each series of AM specimens: as-built, stress relieved and HIPed. The results show that yield strength, ultimate tensile strength (UTS) and elongation are higher than the typical tensile properties reported for annealed 316L. Repairs show excellent bond resistance with the wrought material and good mechanical properties with a mean UTS of 647 MPa in the as-built condition.
               
Click one of the above tabs to view related content.