LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Method for Rapid Modeling of Distortion in Laser Powder Bed Fusion Metal Additive Manufacturing Parts

Photo from wikipedia

The simulation and modeling of part-level distortion and residual stress in diverse metal additive manufacturing (AM) geometries has great potential to enable the rapid adoption of this technology in engineering… Click to show full abstract

The simulation and modeling of part-level distortion and residual stress in diverse metal additive manufacturing (AM) geometries has great potential to enable the rapid adoption of this technology in engineering design. Moreover, the use of additive manufacturing component libraries (CLs) offer a computationally efficient means of quantifying these part-level defects resultant from AM processing. We report on how the individual simulations of simple shapes, potential entries in a CL, can be superimposed to provide an indication of distortion and residual stresses in complex geometries. Laser powder bed fusion AM was used to construct test geometries of varied shapes and their combinations in the form of CLs in an effort to characterize location-dependent and feature-dependent distortion distributions. Blue light scanning was used to experimentally measure 3D distortions in order to investigate the interaction between the component shapes and local boundary conditions. Overall, part-level distortions were highly dependent on test component geometry, local boundary conditions, and shape combination. Commercial finite element software was used to verify experimental trends and to make predictions of distortion. The use of CLs resulted in over 20 times savings in computational cost while reproducing overall trends in distortion for test geometry assemblies. Therefore, it is anticipated that the use of CLs for L-PBF AM geometries has demonstrated potential to facilitate efficient simulations of full component AM assemblies, thereby reducing the need for costly trial-and-error-type experimental analysis.

Keywords: distortion; metal additive; laser powder; geometry; additive manufacturing

Journal Title: Journal of Materials Engineering and Performance
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.