LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling of Rapid Solidification with Undercooling Effect During Droplet Flattening on a Substrate in Coating Formation

Photo by thinkmagically from unsplash

The coating deposit on the substrate in thermal spray coating process develops by solidification of individual molten particle which impacts, flattens and solidifies on the surface of the substrate. Droplet… Click to show full abstract

The coating deposit on the substrate in thermal spray coating process develops by solidification of individual molten particle which impacts, flattens and solidifies on the surface of the substrate. Droplet flattening and solidification typically involves rapid cooling. In this paper, a model for non-equilibrium rapid solidification of a molten droplet spreading onto a substrate is presented. Transient flow during droplet impact and its subsequent spreading is considered using the volume of fluid surface tracking method which was fully coupled with the rapid solidification model. The rapid solidification model includes undercooling, nucleation, interface tracking, non-equilibrium solidification kinetics and combined heat transfer and fluid flow as required to treat a non-stagnant splat formed from droplet flattening. The model is validated with the literature results on stagnant splats. Subsequently, using the model the characteristics of the rapidly solidifying interface for non-stagnant splat, such as interface velocity and interface temperature, are described and the effect of undercooling and interfacial heat transfer coefficient are highlighted. In contrast to the stagnant splat, the non-stagnant splat considered in this study displays interesting features in the rapidly solidifying interface. These are attributed to droplet thinning and droplet recoiling that occur during the droplet spreading process.

Keywords: droplet; solidification; model; droplet flattening; rapid solidification; substrate

Journal Title: Journal of Thermal Spray Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.