LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-transferred Arc Torch Simulation by a Non-equilibrium Plasma Laminar-to-Turbulent Flow Model

Photo from wikipedia

Non-transferred arc torches are at the core of diverse industrial applications, particularly plasma spray. The flow in these torches transitions from laminar inside the torch to turbulent in the emerging… Click to show full abstract

Non-transferred arc torches are at the core of diverse industrial applications, particularly plasma spray. The flow in these torches transitions from laminar inside the torch to turbulent in the emerging jet. The interaction of the plasma with the processing gas leads to significant deviations from local thermodynamic equilibrium (LTE) far from the arc core. The flow from a non-transferred arc plasma spray torch is simulated using a non-LTE (NLTE) plasma flow model solved by variational multiscale (VMS) and nonlinear VMS (VMSn) methods, which are suitable for unified laminar and turbulent flow simulations. Non-plasma turbulent jet simulations indicate that the VMSn method produces results comparable to those by the dynamic Smagorinsky method, often considered the workhorse for turbulent incompressible flow simulations. VMS and VMSn approaches are applied to the simulation of incompressible, compressible, and NLTE plasma flows in non-transferred arc torch operating at representative conditions found in plasma spray processes. The NLTE plasma flow simulations reproduce the dynamics of the arc inside the torch together with the evolution of turbulence in the produced plasma jet in a cohesive manner. However, the similarity of results by both methods indicates the need for numerical resolution significantly higher than what is commonly afforded in arc torch simulations.

Keywords: plasma; transferred arc; arc torch; flow; turbulent; non transferred

Journal Title: Journal of Thermal Spray Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.