Abstract This paper examines a series of Al-Cu binary alloy coatings, ranging from 2 to 5 weight percent copper, produced using low-pressure cold spray (CS) deposition with helium as the… Click to show full abstract
Abstract This paper examines a series of Al-Cu binary alloy coatings, ranging from 2 to 5 weight percent copper, produced using low-pressure cold spray (CS) deposition with helium as the carrier gas. Binary Al-Cu alloy feedstock powder was produced through inert gas atomization and was sprayed over a variety of temperatures and pressures. Using helium gas, this set of Al-Cu alloys was successfully deposited as high-density coatings. Raising the carrier gas pressure increased the particle velocity and deposition efficiency (DE) in the case of spraying the Al-5 wt.% Cu powders. A clear composite deformation structure was formed in all coatings with clear prior particle centers surrounded by severely deformed regions with ultrafine grains. Microstructural deformation generated by the CS process produced a weak but clear <110> fiber texture for both Al-2 wt.% Cu and Al-5 wt.% Cu coatings. The copper content of the feedstock powder directly influenced the coating hardness and porosity, while having no systematic effect on the DE.
               
Click one of the above tabs to view related content.