LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wear and Corrosion Resistance of Cold-Sprayed Cu-Based Composite Coatings on Magnesium Substrate

Photo from wikipedia

The applications of magnesium-based alloys are often limited by their poor corrosion and wear resistance performance. The aim of this study is to improve the performance of magnesium alloys by… Click to show full abstract

The applications of magnesium-based alloys are often limited by their poor corrosion and wear resistance performance. The aim of this study is to improve the performance of magnesium alloys by using metal–ceramic coatings. Cu-Ni/Al2O3 and Cu-Zn/Al2O3 coatings were deposited by cold spray. Their microstructure, microhardness, tribological, and corrosion behavior were compared with those of Cu-Al2O3 coatings. The results showed that the Cu-Al2O3 coatings exhibited higher microhardness, lower wear rate, and better corrosion resistance than the Mg alloy substrate, but their antifriction performance was not ideal. Adding Ni or Zn to the Cu-Al2O3 coating resulted in a denser coating with lower porosity. Ni increased the microhardness of the Cu-Al2O3 coating but did not improve its antifriction performance or wear resistance, while Zn increased the microhardness, antifriction performance, and wear resistance of the Cu-Al2O3 coating. The corrosion resistance of the Cu-Al2O3 coating was enhanced by adding Ni, which improved the compactness of the coating, in contrast to the addition of Zn, as the rapid corrosion of Zn resulted in formation of loose corrosion products without protective effect. Thus, such modification of Cu-Al2O3 coatings should be based on application requirements.

Keywords: al2o3 coatings; magnesium; corrosion; resistance; performance; corrosion resistance

Journal Title: Journal of Thermal Spray Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.