LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Softening Behavior of Cold-Sprayed Aluminum-Based Coatings AA1200 and AA7075 During Annealing

Photo from wikipedia

For lightweight constructions, joining dissimilar metals is often indispensable to achieve exceptional properties. A common challenge is the bonding of steel and aluminum parts. The use of cold-sprayed coatings as… Click to show full abstract

For lightweight constructions, joining dissimilar metals is often indispensable to achieve exceptional properties. A common challenge is the bonding of steel and aluminum parts. The use of cold-sprayed coatings as a bonding agent is an innovative approach for high pressure die casting (HPDC) aluminum-steel hybrid components in order to achieve a metallurgical bonding, although it comes with high requirements in terms of coating adhesive and cohesive strength. Therefore, the main aim of this study is the optimization of a post-processing treatment of cold-sprayed coatings in order to improve the cohesive strength to help the introduced coatings withstand the mechanical and thermal stresses during HPDC. The effect of the heat treatment on the mechanical properties of the cold-sprayed Al99.0 and AA7075 coatings was investigated. Freestanding coatings were heat-treated at a temperature of T  = 400 °C for different dwell times in order to analyze the recrystallization kinetics through hardness measurements. Two different heat treatment states along with an as-sprayed condition were chosen to investigate the evolution of the mechanical properties of the coatings by means of 3-point bending tests. Besides the softening of the coatings during the heat treatment, sintering effects at splat boundaries and their impact on fracture mechanisms were investigated using electron microscopy.

Keywords: softening behavior; aluminum; cold sprayed; heat treatment

Journal Title: Journal of Thermal Spray Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.