The impacts of elevated temperature and CO2 on young silver birch (Betula pendula Roth) saplings after 0, 25, 50 or 75% artificial defoliation were assessed by measuring plant height and… Click to show full abstract
The impacts of elevated temperature and CO2 on young silver birch (Betula pendula Roth) saplings after 0, 25, 50 or 75% artificial defoliation were assessed by measuring plant height and dry mass of aboveground compartments and roots and various morphological and physiological variables. Defoliation either increased or decreased plant growth depending on the severity of damage and the climatic treatment. At 21 °C and 400 mg L−1 CO2, defoliated plants were not able to compensate for the lost foliage, but growth compensation and adaptation to the changed conditions were greater; growth of young defoliated silver birch saplings increased, which led to increased height and a tendency to enhance final aboveground and root biomass and leaf nitrogen and carbon content compared to the nondefoliated controls. Nevertheless, the short-term effect of the different climatic conditions did not result in a significant overgrowth of defoliated plants. A slight increase in temperature and CO2 were the most acceptable conditions for defoliated plants; however, a 4 °C increase with correspondingly higher CO2 was more stressful as shown by less growth in height and biomass allocation to leaves, stems and roots. The findings from the pilot experiment are more applicable to young birch trees, but stress on young trees may be reflected in future tree growth.
               
Click one of the above tabs to view related content.