Primary dysmenorrhea (PDM), defined as painful menstrual cramps of uterine origin, could cause brain structural and functional changes after long-term menstrual pain. Here, we aimed to investigate the predictive value… Click to show full abstract
Primary dysmenorrhea (PDM), defined as painful menstrual cramps of uterine origin, could cause brain structural and functional changes after long-term menstrual pain. Here, we aimed to investigate the predictive value of uterine morphological features and microstructural/functional properties of the brain extracted from periovulatory phases for the intensity of menstrual pain as rated by women with PDM during their subsequent menstrual period. Forty-five women with PDM were recruited and classified into the high and mild pain intensity groups. Pelvic MRI was employed to extract the uterine texture features. White matter diffusion properties, grey matter and functional connectivity features were extracted as brain features. Multivariate logistic regression models with iteration optimization were built for classifying different pain intensity groups. Texture features from myometrium and uterine junction zone had outstanding prediction performance with an area under the receiver operating characteristic (AUC) of 0.96 ( P < 0.05, permutation test), and diffusion properties along the thalamic fiber bundles were the most discriminative features with AUC of 0.95. Applying features from uterus and brain together, we could gain better prediction performance. Our results indicated that accumulated differences in menstrual pain were associated not only with uterine structure but also diffusion properties of thalamic-related fiber tracts, suggesting that treatment options of PDM patients may be expanded from only being able to manage pain in the uterus focusing on the functional/structural modifications of the pain processing system.
               
Click one of the above tabs to view related content.