LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential of tire pyrolysis char as tar-cracking catalyst in solid waste and biomass gasification

Photo by andriyko from unsplash

Municipal solid waste (MSW) disposed in landfills is a serious environmental hazard and waste of potential source of reusable resources and energy as only a small portion of MSW is… Click to show full abstract

Municipal solid waste (MSW) disposed in landfills is a serious environmental hazard and waste of potential source of reusable resources and energy as only a small portion of MSW is incinerated. Pyrolysis and gasification of MSW is an alternative to commercial combustion for the recovery of valuable chemicals and production of heat and electricity. Tar formation is a serious problem in the gasification process. Tar content in the product gas has to be decreased to a certain level required by the downstream production line. This can be achieved by the application of a suitable catalyst. However, commercial catalysts are expensive, prone to fast deactivation and sintering. Char from waste tire pyrolysis is a suitable catalyst for tar decomposition as it contains a significant amount of metals and has relatively large specific surface area. The advantage of this catalyst is its low price and no need for its regeneration as it can be simply combusted after losing its activity. In this work, catalysts prepared from tire pyrolysis char were activated at three different temperatures. The impact of activation temperature on the properties of prepared catalysts was analyzed. Tar cracking activity of the prepared catalysts was tested in a continuous tubular reactor and toluene was used as a model tar compound. Char activated at 900 °C achieved the highest toluene conversion and the lowest tar yield, so it was selected for application in batch gasification of refuse-derived fuel (RDF). During RDF gasification, the presence of a selected catalyst in the secondary reactor led to a decrease in the total amount of produced tar by 92.3% compared to non-catalytic (thermal) decomposition.

Keywords: tar; catalyst; tire pyrolysis; waste; gasification

Journal Title: Chemical Papers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.