LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural transformation of Ag3PO4 and Ag3PO4/TiO2 induced by visible light and Cl− ions: its impact on their photocatalytic, antimicrobial, and antifungal performance

Photo by ale_s_bianchi from unsplash

In this work, synthesis of Ag3PO4 and its composite with TiO2 (Ag3PO4/TiO2) toward study of two phenomena naturally occurring in Ag3PO4 is reported, specifically a visible light-driven (i.e., photocorrosion) and… Click to show full abstract

In this work, synthesis of Ag3PO4 and its composite with TiO2 (Ag3PO4/TiO2) toward study of two phenomena naturally occurring in Ag3PO4 is reported, specifically a visible light-driven (i.e., photocorrosion) and chloride ion-driven transformation of Ag3PO4 to AgCl in chloride-free and chloride-present aqueous solution. A deeper insight on this transformation via study of their structural and morphological changes using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) is performed. Substantial amount of AgCl is detected in both Ag3PO4-based materials after visible light irradiation in chloride-present environment. This led to an increase in optical band gap of Ag3PO4 and Ag3PO4/TiO2 from 2.52 to 2.99 eV and 2.48 to 3.02 eV, respectively. Impact of these structural changes in Ag3PO4 and Ag3PO4/TiO2 on their photocatalytic activity is evaluated from the photoinduced catalytic, antibacterial, and antifungal performance under visible light irradiation. The photocatalytic activity of pristine and photocorroded Ag3PO4 is increased by ~ 10 times compared to that of pristine and photocorroded Ag3PO4/TiO2. Photocorroded Ag3PO4 and Ag3PO4/TiO2 possess minor antibacterial and antifungal activities (cell survival ~ 90%), whereas using pristine Ag3PO4 and Ag3PO4/TiO2 the cell survival is reduced by 100% after 60 and 120 min, respectively.

Keywords: visible light; transformation; ag3po4 ag3po4; ag3po4; ag3po4 tio2

Journal Title: Chemical Papers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.