LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A comprehensive study of mild steel corrosion in the aggressive acidic environment using CMPPC, a substituted pyrazole derivative

Photo from wikipedia

CMPPC, 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde was synthesised from 3-methyl-1-phenyl-5-pyrazolone, and its corrosion protection properties for mild steel in HCl were studied using mass loss studies, impedance spectroscopy, polarisation studies, adsorption studies and basic… Click to show full abstract

CMPPC, 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde was synthesised from 3-methyl-1-phenyl-5-pyrazolone, and its corrosion protection properties for mild steel in HCl were studied using mass loss studies, impedance spectroscopy, polarisation studies, adsorption studies and basic quantum chemical calculations. The protection efficiency decreases with an increase in temperature and acid concentration but increases with an increase in the concentration of the inhibitor. Electroanalytical screening reveals that the molecule behaves like a mixed-type inhibitor. CMPPC adsorbs on the metal surface, and the phenomenon obeys Langmuir adsorption isotherm pattern. Various kinetic and thermodynamic parameters are calculated using Arrhenius and Van’t Hoff approaches. Molecular dynamics simulations are employed using computational chemistry protocols. The results indicate that the CMPPC offers maximum interaction on Fe(111) plane of the metal surface.

Keywords: mild steel; comprehensive study; study mild; cmppc; corrosion

Journal Title: Chemical Papers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.