LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anti-bacterial performance evaluation of hydrophobic poly (dimethylsiloxane)-ZnO coating using Pseudomonas aeruginosa

Photo by charlesdeluvio from unsplash

Pseudomonas aeruginosa (P. aeruginosa) has been implicated in the attachment and formation of marine biofilms which initiate biofouling and biocorrosion. To this end, several hydrophobic and superhydrophobic coatings have been… Click to show full abstract

Pseudomonas aeruginosa (P. aeruginosa) has been implicated in the attachment and formation of marine biofilms which initiate biofouling and biocorrosion. To this end, several hydrophobic and superhydrophobic coatings have been suggested for anti-bacterial application, but some possess toxic substances which affect useful aquatic lives. Thus, the aim of this study was to appraise the anti-bacterial and anti-corrosion performance of hydrophobic perfluorodecyltrichlorosilane (FDTS)-modified poly (dimethylsiloxane) (PDMS)-ZnO coating using P. aeruginosa. The surface analytical, physico-chemical and electrochemical techniques were used to investigate the properties of the coatings. Results show that FDTS-modified PDMS-ZnO coating displayed higher resistance to adhesion of P. aeruginosa biofilm and better corrosion resistance performance than the unmodified coating. The outstanding performance of FDTS-modified coating was attributed to the low surface activity of FDTS which increased the kinetic barrier between the coating surface and biofilm. It is therefore anticipated that these results would provide insight in the design of future anti-bacterial coatings for marine application.

Keywords: pseudomonas aeruginosa; anti bacterial; zno coating; performance; poly dimethylsiloxane

Journal Title: Chemical Papers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.