LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automated retrofit targeting of heat exchanger networks

Photo by visuals_by_fred from unsplash

The aim of this paper is to develop a novel heat exchanger network (HEN) retrofit method based on a new automated retrofit targeting (ART) algorithm. ART uses the heat surplus-deficit… Click to show full abstract

The aim of this paper is to develop a novel heat exchanger network (HEN) retrofit method based on a new automated retrofit targeting (ART) algorithm. ART uses the heat surplus-deficit table (HSDT) in combination with the Bridge Retrofit concepts to generate retrofit bridges option, from which a retrofit design may be formulated. The HSDT is a tabular tool that shows potential for improved re-integration of heat source and sink streams within a HEN. Using the HSDT, retrofit bridges—a set of modifications that links a cooler to a heater to save energy—may be identified, quantified, and compared. The novel retrofit method including the ART algorithm has been successfully implemented in Microsoft ExcelTM to enable analysis of large-scale HENs. A refinery case study with 27 streams and 46 existing heat exchangers demonstrated the retrofit method’s potential. For the case study, the ART algorithm found 68903 feasible unique retrofit opportunities with a minimum 400 kW·unit–1 threshold for heat recovery divided by the number of new units. The most promising retrofit project required 3 new heat exchanger units to achieve a heat savings of 4.24 MW with a favorable annualised profit and a reasonable payback period.

Keywords: automated retrofit; retrofit; heat exchanger; retrofit targeting; heat

Journal Title: Frontiers of Chemical Science and Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.