LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages

Photo by cosmicwriter from unsplash

To better understand the characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages, a novel method which combines a closed-loop thermal hydraulic model (CLTHM) and cloud vector… Click to show full abstract

To better understand the characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages, a novel method which combines a closed-loop thermal hydraulic model (CLTHM) and cloud vector (CV) is developed. Besides, the CLTHM is established and validated based on a pilot plant. Moreover, some key parameters which are used to characterize a typical PTSF and CV are presented for further simulation. Furthermore, two sets of results simulated by the CLTHM are compared and discussed. One set deals with cloud passages by the CV, while the other by the traditionally distributed weather stations (DWSs). Because of considering the solar irradiance distribution in a more detailed and realistically way, compared with the distributed weather station (DWS) simulation, all essential parameters, such as the total flowrate, flow distribution, outlet temperature, thermal and exergetic efficiency, and exergetic destruction tend to be more precise and smoother in the CV simulation. For example, for the runner outlet temperature, which is the most crucial parameter for a running PTSF, the maximum relative error reaches −15% in the comparison. In addition, the mechanism of thermal and hydraulic unbalance caused by cloud passages are explained based on the simulation.

Keywords: thermal hydraulic; ptsf; characteristics large; large scaled; cloud passages

Journal Title: Frontiers in Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.