An environment-friendly, water-soluble, and cellulose based binder (lithium carboxymethyl cellulose, CMC-Li) was successfully synthesized by using Li+ to replace Na+ in the commercial sodium carboxymethyl cellulose (CMC-Na). Li-O2 batteries based… Click to show full abstract
An environment-friendly, water-soluble, and cellulose based binder (lithium carboxymethyl cellulose, CMC-Li) was successfully synthesized by using Li+ to replace Na+ in the commercial sodium carboxymethyl cellulose (CMC-Na). Li-O2 batteries based on the CMC-Li binder present enhanced discharge specific capacities (11151 mAh/g at 100 mA/g) and a superior cycling stability (100 cycles at 200 mA/g) compared with those based on the CMC-Na binder. The enhanced performance may originate from the electrochemical stability of the CMC-Li binder and the ion-conductive nature of CMC-Li, which promotes the diffusion of Li+ in the cathode and consequently retards the increase of charge transfer resistance of the cathode during cycling. The results show that the water-soluble CMC-Li binder can be a green substitute for poly(vinylidene fluoride) (PVDF) binder based on organic solvent in the lithium oxygen batteries (LOBs).
               
Click one of the above tabs to view related content.